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Homework assignment 1

2.1
An Introduction to Axiomatics and Proof
An axiomatic system is a formalized construct that is used in business, religion, and mathematics – to name a few fields – and by many people, unconsciously.  It provides a way to organize what is known (or believed to be “the way things are”) and to make assertions and predictions about why things happen or what’s an inevitable consequence of a happening. 

In an axiomatic system, once the axioms are accepted, all that follows is internally logical. Often, in real life, the big problem is understanding just what the axioms are.  Luckily in this course, we will stick to math structures and handle nothing personal or controversial.  And our axioms will be spelled out in writing right up front.

Here’s the structure:

0th level:
Underlying foundations of arithmetic and logic



(See the Primer for these, especially pages 2 and 3.)

1st level:
Undefined terms


A brief list of nouns and the occasional adverb or verb.



Some examples:
point, line, on






point, line, space, intersect



You may visualize these nouns as objects and the  spatial relationships 


(called incidence relations) as something physical and quite usual or get 


very creative.

2nd level:
Axioms


A set of rules.  Generally, the higher the level of math, the briefer the set.



An eighth grade geometry text may have 30 axioms for Euclidean 



Geometry; a graduate textbook might have 6 for the same geometry.



Axioms are always true and cannot be contradicted if you’re working in 


the geometry they describe.

3rd level:
Definitions


Terms that can be defined by using axioms, the undefined terms, other 


definitions, and theorems.

4th level:
Theorems


A statement about properties of the geometry or objects in the geometry 


that can be shown to be true using a logically developed argument called a 

proof.

There are several examples of small axiomatic systems in the text.  I have added in the structural elements that the author didn’t show in sections 2.1 and 2.2 so you can see the larger context.  I have also included some additional discussion and examples for you to ponder.  These additions are part of the course and may appear on tests.

Text example 1 p. 52:
The Three Axiom Geometry*

Undefined terms:

point, line, contained, intersect

Axioms:


1.
Each line is a set of four points.





2.
Each point is contained by precisely two lines.





3.
Two distinct lines that intersect 






do so in exactly one point.

Definition:


Parallel lines are lines that share no points.

* I’ve just given it a name and some structure to clarify the discussion coming up.

Question:


Do parallel lines exist in this geometry?

We will illustrate the answer without proving it.  This figure looks a bit like the first iteration in the book.
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Lines A and B are parallel.  They individually intersect line C.  

Note that the drawing is incomplete…I cannot stop here because the first point down on line A has to be on two lines by Axiom 2.  And once I put on that second line, I’m obliged to put on 3 more points on it by Axiom 1.  And so on and so on…this is exactly the same situation you get into with infinite sets, you need to put an ellipsis on the drawing.  In the text the author shows several iterations of model.  This model has an infinite number of lines and points.  

Enrichment 1:

Here’s a fact that illustrates how non-Euclidean this little geometry is.  We’ll take the definition of parallel lines to be lines that share no points.  In Euclidean geometry, if you have a line L and point P not on L, there’s exactly one line through P that is parallel to L.  In this geometry, there are exactly two lines through P parallel to L, line 1.   

Here’s an illustration for this geometry:
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Now, let’s talk about something else that’s important and non-Euclidean, too:
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Enrichment 2:

What’s in between P1 and P2 on line C?

If you said “points”, you’re totally off base.  There are only 4 points on line C and they’re numbered.  These lines are NOT Euclidean lines, they’re visualizations for this specific geometry.  What’s in between is “line stuff” but it is definitely NOT points.  There’s no midpoint between P1 and P2 and there’s no way to measure distance (you need an axiom and a definition that we’re lacking).  You must not bring facts from Euclidean geometry into these non-Euclidean geometries.  This takes some getting used to.

Enrichment 3:

What if I extend lines A and B so they cross?

[image: image21.emf]E

D

C

B

A


Lines A and B are STILL parallel…that place where they cross in the picture…there’s no point there…the only points are the dots…they cross on “line stuff” and lines only have 4 points on them…If you want to put a point there, you may and you’ll get another fractal model with infinitely many points and it’ll have little “V” 







    shapes.

Here’s a sketch of what this iteration would look like if a point were there.    It’s different than the model in the book.  And you’ll get parallel lines in the second iteration, too.

Note that axiom 3 does not say that every line crosses every other line, it just says…”if they do happen to intersect, then it’s at one point”.
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Try drawing a couple iterations yourself of this new way to see how it works out.

Now if there’s only one model, the geometry is said to be categorical.  If there is more than one model, then the geometry is non-categorical.  Euclidean geometry, Hyperbolic geometry and Spherical Geometry – the big geometries we will study this semester are all categorical.  The Three Axiom Geometry is non-categorical.  We’ve explored a model with an infinite number of points; now let’s look at a model with a finite number of points.

Enrichment 4:

Here’s another model for these same axioms (repeated here).

Undefined terms:

point, line, contained, intersect

Axioms:


1.
Each line is a set of four points.





2.
Each point is contained by precisely two lines.





3.
Two distinct lines that intersect 






do so in exactly one point.

Definition:


Parallel lines are lines that share no points.

Question:


Do parallel lines exist in this geometry?

[image: image2.emf]
Check for yourself that the model meets the requirements for the axioms.

Note that there are 5 lines and 10 points.

The answer is:  no.  There are no parallel lines in this geometry.
This means that the “3 Axiom Geometry” is non-categorical.  We can have drastically different models that fit the axioms.  Sometimes this happens – it just means that this particular geometry has rather “loose” axioms…they’re open to interpretation with several models.

Enrichment 5:

What happens if we agree to add a fourth axiom to the





original three?

Undefined terms:

point, line, contained, intersect

Axioms:


1.
Each line is a set of four points.





2.
Each point is contained by precisely two lines.





3.
Two distinct lines that intersect 






do so in exactly one point.





4.
Each two lines intersect at exactly one point.
Definition:


Parallel lines are lines that share no points.

Question:


Do parallel lines exist in this geometry?

I’ll join lines A and B as above and try adding line D as if I were doing it for the 3 Axiom geometry.
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There’s a problem. Line D has to intersect lines B and C by axiom 4.  So I’ll fix that and add another line.
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Line D is now dotted for contrast and despite the angular look, it’s just a line.  The word “straight” isn’t part of this geometry; that’s another Euclidean assumption.

Now I need to fix line E; it’s the thicker line.  Note that there’s only one point to share with on line C and one point to share with on lines D and B and it’s already got the last available point on line A.  

Is there a way for me to add a line F?  

No.  Suddenly this is NOT a geometry with an infinite number of points any longer: it has 5 lines and 10 points.  And more importantly, there is no flexibility in the model – it is now what we call a categorical geometry (only one model works).  And there are NO parallel lines in this modified geometry.  Note how much of a change one sentence made.

Here’s a sketch of the modified geometry.  Can you make a prettier one?  
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Moving on to pages 54 – 59
Please read these on your own.  Note that some of the material is assumed to be in your background already and some is covered in the Primer.

Please take special note of the “Method of Exhaustion” on page 57 in the text.  This is discussed in the Primer as “Elimination Proofs” (on page 12 of the Primer).  We will be doing several of these elimination proofs a little later in the course and I’ll cue you when we do.

2.1 homework hints

4.  
This is a proof in Euclidean Geometry.  You may use facts and theorems from any 
Euclidean text or from a high school book to support your argument on what is 

the “if” and what is the “then” part.  Note that the only fact from the 
hypothesis is that the triangle is equilateral.

10.
Be sure to define your variables…like L = John lost his locker key.


Answer the question from a teaching standpoint…which would you rather teach?

12.
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14.
Be very clear with your reasons, please.  Don’t skip steps.

2.2 The Role of Examples and Models
Suppose we want to explore the concept of measuring an angle in geometry.  We start with a line, noting that the line divides the plane into two half planes (we are using the Euclidean Plane here).  These three point sets are disjoint.  The line is one point set and the two half planes are the second and third point sets.

[image: image24.emf]If we put another, distinct line in the plane we get two more half planes from that line. And we get 3 more disjoint sets.

[image: image25.emf]V4

V3

V2

V1


Now if we look at all 6 sets (2 lines, 4 half planes) together in one sketch, we can see that we’ve got 4 angles and the 6 sets that are not mutually disjoint.
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Now angle a is a point set.  It consists of two rays and their point of intersection, the vertex. 

The INTERIOR of angle a is a different, distinct, and disjoint point set from angle a.  It is the intersection of half plane 1 and half plane 4; color this in with two colors of crayon to really see what is going on .  (Note that the rays and the vertex that make angle a are NOT part of the interior of angle a.)

We measure the angle by placing a protractor along one ray and checking to see where on the arc of the protractor the second ray hits.  The interior of the angle is always spanned by the protractor.    In the sketch below the protractor is symbolized by the pink line.

[image: image27.emf]
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Note that your protractor has only 180(.  This is a firm limit.  We do not have angles that measure 210( in geometry (we do have them in trigonometry, but not here).  We have acute angles and obtuse angles but not angles that measure more than 180(.  In fact, we don’t even allow angles that measure exactly 0( or exactly 180( and we drop the degree symbol in this course.

Here’s a question that illustrates a consequence of this way of measuring angles: 

 
how many degrees are there to the sum of the interior angles of a quadrilateral?

Text example 1, page 62
 There’s a very nice proof about this question with a parallelogram on page 62.  It shows that the sum of the interior angles of a parallelogram is 360(.  

Now this proof does not answer the question above.  It is all about a special case quadrilateral, not an arbitrary quadrilateral (see Primer, page 5 number 7 for the warning about the selection of objects to use when proving.)

The quadrilaterals with special names are NOT arbitrary:  trapezoid, isosceles right trapezoid, rhombus, square, rectangle, parallelogram…none of these are arbitrary.

Here’s an arbitrary quadrilateral.  Note that you don’t have nice name like rectangle, square or rhombus for it.  It’s the mutt of the quadrilateral world and it’s what you need to pick to discuss answering the question above.  The interior of the quadrilateral is colored in yellow.

[image: image28.emf]
You can see that we have two triangles if we join V2 and V4 with a segment.  Then we can just follow the pattern from the example 1 proof…decompose the polygon, add up both of the 180’s and get 360(.

BUT, wait…

Let’s measure the angles at the vertices just to make sure…  

[image: image6.emf]mV4 = 90.00

mV3 = 15.00

mV2 = 60.00

mV1 = 15.00

V4

V3

V2

V1

C

B'

B A


This adds up to 180(.  What’s happened here?

The problem is with V4.  When we measure it…

We have to measure it as a geometric angle and it measures 90(.  And the angle’s interior is NOT coincident with the interior of the quadrilateral.

[image: image29.emf]
This kind of quadrilateral is called “not convex” and you will always have a problem talking about the sum of the interior angles with polygons that are not convex.  

The only kind of polygon all of whose vertices’ angle interiors coincide with the interior of the polygon is called a convex polygon.  

For right now, as a working definition, we’ll say that any polygon with all diagonals intersecting is convex.  We will work more with this concept later when we get the Plane Separation Axiom.
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The arbitrary quadrilateral on the left is not convex – the dotted lines are diagonals that do not intersect.  The parallelogram on the right is convex – the dotted lines are diagonals and they do intersect.
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The hexagon on the left is not convex and the one on the right is convex.  The diagonals are dotted lines.

Text example 2 page 63

Here’s an example of a picture with a proof that is just plain misleading.

The solution is in the back of the book.  It’s problem 9.  

You have problem 10 assigned as homework.  It is a picture proof with a flaw as well.

Use Sketchpad or Cabrini to find the problems – it’ll go much faster.   

Now we’re back to axiomatic systems with this is a nice little geometry.  In fact, it’s about as minimal a geometry as we can get.

Text example 3 page 65

Undefined terms:

point, line, contain

Axioms:


A1
There exist two points.





A2
There exists a line containing those points.

Here’s the model.  This is a categorical geometry.  We’ll use dots for points and lines for lines.  Any other objects that you use will make a model that is isomorphic to this one.

[image: image32.emf]
You may label the points as the author did or leave them alone.

This is a three object geometry and the line is NOT composed of an infinite number of points; it has 2 points exactly.  We call geometries with a given number of points “finite geometries”.  

We don’t have a midpoint for the line, nor can we talk about the length of the line.  If you do want to get into distance or measurement, you need enabling axioms that discuss this property and we don’t have that here.

Text example 4 page 65

Here’s another non-Euclidean finite geometry.  It is “non-categorical”.  There are several models that can be drawn that are fundamentally different from one another and none of the distinct models contracts the axioms in any way.

Undefined terms:

point, line, contains

Axioms:


A1
There exist 5 points.





A2
Each line is a subset of those 5 points.





A3
There exist 2 lines.





A4
Each line contains at least 2 points.

The text has 3 models.  Here’s another, a 4th model:

[image: image7.emf]
As we have multiple models, none of them isomorphic, this geometry is non-categorical.

A suggested definition would be “connected”.  The geometry is said to be connected if each point is contained to one or more of the two lines.  The model above is connected but model number 3 in Figure 2.9 is not connected.

Please note the vocabulary of axiomatic system:  independent, consistent, and categorical on pages 65 and 66.

Enrichment 1:

This is a categorical finite non-Euclidean geometry.  

[In fact, all finite geometries are non-Euclidean.]

The Three Point Geometry:

Undefined Terms:

point, line, on

Axioms:


A1
There are exactly 3 distinct points





A2
Two distinct points are on exactly one line.





A3
Not all the points are on the same line.





A4.
Each pair of distinct lines are on at least one point.

Model:

[image: image8.emf]
Definitions:

Collinear points are those that are on the same line.




Intersecting lines are those that share at least one point.

Theorems:

Theorem 1:

Each pair of distinct lines is on exactly one point.

Theorem 2:

There are exactly 3 distinct lines in this geometry.

Proofs:

Theorem 1
Each pair of distinct lines is on exactly one point.

Let A and B be two distinct lines of the geometry.  By A4, this pair is on at least one point, P1.  Suppose they are on a second point, P2.  This supposition means that P1 and P2 are both on line A and on line B.  The supposition contradicts A2.  So there is no such second point P2 and the lines are on exactly one point as claimed.

Theorem 2
There are exactly 3 distinct lines in this geometry.

A1 and A2 assert that we are selecting 3 points, two at a time to be “on exactly one line.”

Using C(3,2), we have, then, that there are at least three lines (L1, L2, and L3).  Suppose there is a fourth line, L4.  By Theorem 1 L4 shares one point with any other distinct line in the geometry.  In other words, there is a point on L4 that is also on each of the other three lines.  This means there are at least four points in the geometry which contradicts A1.  Thus there is no such fourth line.

Proof analysis:

These are both proofs by contradiction.  When you have “exactly n” of something, the general formula is to show how you have up to n.  Then suppose one more than n and show this cannot happen because it contradicts an axiom or a previously proved theorem.

Enrichment 2:

The Sibley Geometry

It is non-Euclidean and non-categorical (finite or infinite depending on the model)

Undefined terms:

point, line, on

Axioms:


A1
Every point is on exactly 2 distinct lines.





A2
Every line is on exactly 3 distinct points





A3
There are at least 3 distinct points.

Assertion:


The ratio of points to lines in each model is 3:2.

Two of many models:

Finite, correct ratio (3 points, 2 lines)
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Infinite, correct ratio (start with the intersection on the left and count 1 point, 2 half-lines, “finish” the half-lines using the lines up to but not including the point of intersection on the right…9 points, 6 lines)

[image: image34.emf]

Text example 5:

A non-traditional geometry.  See if you can find yet another model (this is question 5 on page 67…there’s an answer in the back of the book).

2.2 homework hints

6 
Doodling will help a lot on this one.

10
Using a geometry sketching program will help.  Also try it with some special 
triangles like a right triangle or an equilateral triangle…since EVERY triangle is 
isosceles, you are free to test the proof out on some non-scalene triangles.

12
Doodle in the colors suggested.

Enrichment problem:

Find two additional examples of the Sibley Geometry – use 



the assertion to test your model.  I’ve never yet found one 




that wasn’t in ratio.

2.3
 Incidence Axioms for Geometry

Starting with this section, you may only use axioms and theorems that have been proved IN THIS TEXT on the homework and tests.  You may not bring in much in the way of theorems from another text unless you are prepared to prove it BEFORE you use it with what we know from this book.  You must use the definitions given in this book not those from the internet or other books.

Gradually, over the length of the course, we will build Euclidean Geometry and Hyperbolic Geometry.  Our undefined terms will be: point, line, plane, and space.  

In this section, we will look at axioms that deal with the relationships among these undefined terms in the physical sense; i.e. how they relate to one another. 

We are assuming a universal set of points in space.  Lines and planes are subsets of the universal set.  A line may be a subset of a plane; it may have a one point intersection with the plane; or they may be disjoint.  The text uses standard set notation for these situations.  One page 71 in the paragraph at the top of the page is some basic vocabulary we will use all semester long, please read these definitions carefully.

Undefined terms: 

point, line, plane, space 

Incidence Axioms:

I1
Each two distinct points determines a line.





I2
Three noncollinear points determine a plane.





I3
If two points lie in a plane, then any line containing 





them lies in that plane.






I4
If two distinct planes meet, their intersection is a 





line.





I5
Space consists of at least 4 noncollinear points, and 





contains three noncollinear points.  Each plane is a 





set of points of which at least 3 are noncollinear, 





and each line is a set of at least two distinct points.

We will be adding axioms in groups as we move toward Chapter 6.  In this book we’ll end up with 16 axioms in 6 groups:  Incidence, Metric, Angles, Plane Separation, SAS, and a Parallel Postulate (there are two of these to choose from, we’ll study both choices).

Incidence Axiom 1

Each two distinct points determines a line.

This rules out models that have anything like this illustration as part of the model:

[image: image9.emf]line B, distinct from line A
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Note that we’ll use standard superscripted arrows and rays and standard element and subset notation.  
[image: image10.wmf]AB

 is a line segment that has endpoints A and B on it.  
[image: image11.wmf]
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 is a ray that goes toward infinity from B to A.  And so on…

Theorem 2.3.1, page 71 is very handy.  It allows us to rename lines with the labels of any two points on the line.   In the next section we’ll extend this to rays and segments. 

(I will begin using abbreviations for the Theorems.  This one is 2.3.1)

If you’ve ever had a person get confused with the following scenario, you can appreciate this theorem.

[image: image35.emf]line 1
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For some purposes, you may want to discuss line segment 
[image: image13.wmf]AE

, for other purposes in the same proof, you may want to focus on 
[image: image14.wmf]BD

.  These different names do not change the elements of the points in the set nor do they change the nature of the polygon.

This theorem and the upcoming definitions make it ok to call the set what you want to as long as you’re using points from the same set that makes the original line, segment or ray.

Incidence axiom 2

Three noncollinear points determine a plane.

The word “noncollinear” really does need to be there.  Let’s explore why.  

Take two sheets of paper and line them up one on top of the other.  Fold them down the middle and the put 3 staples the long way down the fold.  The length of each staple should lie in the fold.  These three staples are 3 collinear points.  Now pick up the paper by the edges of the top sheet.  Do you see the two planes that cross through the 3 points?  Do you see that you could have done it with 4, 5, or more sheets of paper and arranged it so that all of these planes went through the 3 collinear points? 

If you had stapled randomly on the surface of the two sheets, then you’d be doing what the axiom says – 3 noncollinear points and if you picked up the top sheet you wouldn’t be able to separate the sheets into intersecting planes.

Incidence axiom 3 


If two points lie in a plane, then any line containing 





them lies in that plane


This keeps lines from sagging out of the plane.   It also ensures that if a line is not in a plane, then there are only two options for what is going on with the line:  

· It intersects the plane in exactly one point

· It doesn’t intersect the plane at all; it is parallel to the plane 

(called a skewed relationship).

We want this nice trichotomy of options.  These cases are mutually exclusive.

Incidence axiom 4


If two distinct planes meet, their intersection is a 





line.

This, too, guarantees that planes act the way we think they should.  And, note that the reason it’s in an axiom is that there’s not a way to prove that they do this.  It has to be in the rules.

Incidence axiom 5


Space consists of at least 4 noncoplanar points, and 





contains three noncollinear points.  Each plane is a 





set of points of which at least 3 are noncollinear, 





and each line is a set of at least two distinct points.

Again, we are ensuring that the undefined terms will behave as we have come to expect in Euclidean geometry.  Do note that this has to be spelled out.  There’s not a usual or obvious way for space to be in a relationship with points and planes.  Each geometry has it’s own “given” or customary behavior.

 Theorem 2.3.2, 






page 73 

In this class, you are to write theorems as prose proofs so I’ll rewrite the first half.  Note that it is a proof by contradiction.  The theorem actually means that the lines intersect in exactly one point so I’ll suppose that they meet in two distinct points.  

The second sentence of the theorem is a homework assignment.  

Please do it as a prose proof.

If two distinct lines L and M meet, their intersection is a single point.

Let L and M be distinct lines and suppose that they intersect is in two distinct  points, A and B.  This means that both A and B are on two distinct lines, L and M.  But this is a contradiction to Axiom 1 that states two distinct points determine exactly one line. (
(I follow a European tradition that uses a Halmos box rather than “QED” to signal the end of a proof.  You may use any signal, but do let your reader know that the proof has ended.)

Taken together these 5 axioms and the undefined terms form a geometry, called an incidence geometry, even though they’re also part of a larger system.  There are many versions of incidence axioms and working with them creates finite, non-Euclidean incidence geometries.

Enrichment 1


see  p. 72 Moment for Discovery for the text’s version




of this
An Incidence Geometry

Undefined terms: 

point, line, plane, space 

Incidence Axioms:

I1
Each two distinct points determines a line.





I2
Three noncollinear points determine a plane.





I3
If two points lie in a plane, then any line containing 





them lies in that plane.






I4
If two distinct planes meet, their intersection is a 





line.





I5
Space consists of at least 4 noncollinear points, and 





contains three noncollinear points.  Each plane is a 





set of points of which at least 3 are noncollinear, 





and each line is a set of at least two distinct points.

Model:

The model is a tetrahedron.  This definitely requires 3 dimensions – which is implicit in the word “space”.


I’ll give you a top down view.  It’s almost the same picture as Figure 2.14 on page 74.

Note that there are 4 points, 6 lines, and 4 planes.  

Points:


{A, B, C, D}

Lines:


{
[image: image15.wmf]AB,AC,AD,BC,DC,DB

}

Definition:

parallel lines:

Lines that share no points are called parallel.

There are 3 pairs of parallel lines:

[image: image16.wmf]AB&DC,AC&DB,AD&BC


Planes:


{ABD, ABC, ACD, BDC}

By IA4, the intersection of two planes is a line.  There are 6 intersections to check, we will do one.
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This is a standard intersection of two point 






sets and it results in a point set.

These planes don’t have an infinite number of points.  These are 3-point planes, the name of each plane is a list of the 3 points that comprise the plane.

To verify IA5, note that there ARE 4 non-collinear points. A and B are on the same line; C and D are on the same line, BUT {A, B, C, D} is NOT a line.

Theorems:

Each point is on exactly 3 lines.

Each line is on exactly 2 points.

Both of these proofs have the following steps:

· Demonstrate with counting that there are at least n of the objects

· Posit the n+1th of the objects and show a contradiction.

We are not restricted to 4 points.  This is a non-categorical geometry.  

Here is a 6 point version of this geometry.


6 points, 16 lines, many planes and groups of parallel lines.  Using the dictum that you pick a point not on the line, there are 3 lines containing that point that are parallel to the given line.  Additionally, there are 3 more lines not on that point that share no points with the given line.  We could have 2 kinds of parallel lines:  those on the point and those off the point in this geometry.

Note that some of the apparent intersections are not.  If you think of the points as StryrofoamTM balls and the lines as pipe cleaners, it might help you to see that these crossings are not a points.

The first theorem would change to:  Each point is on exactly 5 lines.  The second theorem would remain the same.
Label the points and check to see that the Incidence Axioms are satisfied on your own.

Enrichment 2

Consider the following system of points, lines, and planes:

Points:  
S = {1, 2, 3, 4, 5}

Lines:

{1, 2, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {4, 5}

Planes:

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 4, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}

Which incidence axioms are satisfied?

Incidence Axioms:



I1
Each two distinct points determines a line.

There’s nothing in this axiom that says ONLY two points determine a line; it’s ok to have 3 collinear points determining a line, as in line {1, 2, 3}.  If you take the combination of 5 things taken 2 at a time and list all 10 of them out, you’ll see that all but one pair one fits into a line (for example: 3 of the combinations go to line {1, 2, 3}).    The only one missing is {3, 4} so I1 is not satisfied.  

I2
Three noncollinear points determine a plane.

The combination of 5 points taken 3 at a time gives 10 triples.  {1, 2, 3}, {1, 3, 4}, 

{1, 4, 5} and so on.  Check to make sure each triple goes to one and only one plane.

I3
If two points lie in a plane, then any line containing 





them lies in that plane.

Take the planes, take the points in pairs, make sure the whole line is in there.

For example, plane {1, 2, 3, 4}, line {1, 2, 3} is all there, lines {2, 4} and {1, 4} are there, too.  Check every possible line for every possible plane.


I4
If two distinct planes meet, their intersection is a 





line.

To check this, intersect every plane with every other plane.  There are a combination of 6 things taken two at a time to check (15 intersections).  Let’s do one:


[image: image18.wmf]{1,2,3,4}{1,4,3}{1,4,3}

Ç=

 which is NOT a line.  Therefore I4 is not satisfied.





I5
Space consists of at least 4 noncollinear points, and 





contains three noncollinear points.  Each plane is a 





set of points of which at least 3 are noncollinear, 





and each line is a set of at least two distinct points.


There are 5 distinct points (check).   3 noncollinear points (check:  4 and 5 are not 


on line {1, 2, 3}).  Each plane is a set of at least 3 noncollinear points (problem:


plane {1, 2, 3, 4} has 3 collinear and 1 non-collinear…it needs another non-
collinear point).

So this example is a geometry, but NOT an Incidence Geometry.

Homework hints:

Problem 4

Use Enrichment 1 as a model for your work.  Do NOT sketch the 



model in 2D…use pipe cleaners and Styrofoam balls.
Problem 9

 Write out the model and use Enrichment 1 to analyze it.

Problem 10

Use a prose format.
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